3.338 \(\int (e \cos (c+d x))^p \sqrt{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=97 \[ -\frac{a 2^{\frac{p}{2}+1} (\sin (c+d x)+1)^{-p/2} (e \cos (c+d x))^{p+1} \, _2F_1\left (-\frac{p}{2},\frac{p+1}{2};\frac{p+3}{2};\frac{1}{2} (1-\sin (c+d x))\right )}{d e (p+1) \sqrt{a \sin (c+d x)+a}} \]

[Out]

-((2^(1 + p/2)*a*(e*Cos[c + d*x])^(1 + p)*Hypergeometric2F1[-p/2, (1 + p)/2, (3 + p)/2, (1 - Sin[c + d*x])/2])
/(d*e*(1 + p)*(1 + Sin[c + d*x])^(p/2)*Sqrt[a + a*Sin[c + d*x]]))

________________________________________________________________________________________

Rubi [A]  time = 0.104876, antiderivative size = 97, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {2689, 70, 69} \[ -\frac{a 2^{\frac{p}{2}+1} (\sin (c+d x)+1)^{-p/2} (e \cos (c+d x))^{p+1} \, _2F_1\left (-\frac{p}{2},\frac{p+1}{2};\frac{p+3}{2};\frac{1}{2} (1-\sin (c+d x))\right )}{d e (p+1) \sqrt{a \sin (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^p*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-((2^(1 + p/2)*a*(e*Cos[c + d*x])^(1 + p)*Hypergeometric2F1[-p/2, (1 + p)/2, (3 + p)/2, (1 - Sin[c + d*x])/2])
/(d*e*(1 + p)*(1 + Sin[c + d*x])^(p/2)*Sqrt[a + a*Sin[c + d*x]]))

Rule 2689

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[(a^2*
(g*Cos[e + f*x])^(p + 1))/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2)), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int (e \cos (c+d x))^p \sqrt{a+a \sin (c+d x)} \, dx &=\frac{\left (a^2 (e \cos (c+d x))^{1+p} (a-a \sin (c+d x))^{\frac{1}{2} (-1-p)} (a+a \sin (c+d x))^{\frac{1}{2} (-1-p)}\right ) \operatorname{Subst}\left (\int (a-a x)^{\frac{1}{2} (-1+p)} (a+a x)^{\frac{1}{2}+\frac{1}{2} (-1+p)} \, dx,x,\sin (c+d x)\right )}{d e}\\ &=\frac{\left (2^{p/2} a^2 (e \cos (c+d x))^{1+p} (a-a \sin (c+d x))^{\frac{1}{2} (-1-p)} (a+a \sin (c+d x))^{\frac{1}{2} (-1-p)+\frac{p}{2}} \left (\frac{a+a \sin (c+d x)}{a}\right )^{-p/2}\right ) \operatorname{Subst}\left (\int \left (\frac{1}{2}+\frac{x}{2}\right )^{\frac{1}{2}+\frac{1}{2} (-1+p)} (a-a x)^{\frac{1}{2} (-1+p)} \, dx,x,\sin (c+d x)\right )}{d e}\\ &=-\frac{2^{1+\frac{p}{2}} a (e \cos (c+d x))^{1+p} \, _2F_1\left (-\frac{p}{2},\frac{1+p}{2};\frac{3+p}{2};\frac{1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{-p/2}}{d e (1+p) \sqrt{a+a \sin (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 3.71412, size = 310, normalized size = 3.2 \[ \frac{(1+i) 2^{-p} e^{-\frac{1}{2} i d x} \sqrt{a (\sin (c+d x)+1)} \cos ^{-p}(c+d x) (e \cos (c+d x))^p \left (e^{-i d x} \left (i \sin (c) \left (-1+e^{2 i d x}\right )+\cos (c) \left (1+e^{2 i d x}\right )\right )\right )^p \left (i \sin (2 c) e^{2 i d x}+\cos (2 c) e^{2 i d x}+1\right )^{-p} \left ((2 p+1) e^{i d x} \left (\cos \left (\frac{c}{2}\right )+i \sin \left (\frac{c}{2}\right )\right ) \, _2F_1\left (\frac{1}{4} (1-2 p),-p;\frac{1}{4} (5-2 p);-e^{2 i d x} (\cos (c)+i \sin (c))^2\right )+(2 p-1) \left (\sin \left (\frac{c}{2}\right )+i \cos \left (\frac{c}{2}\right )\right ) \, _2F_1\left (\frac{1}{4} (-2 p-1),-p;\frac{1}{4} (3-2 p);-e^{2 i d x} (\cos (c)+i \sin (c))^2\right )\right )}{d (2 p-1) (2 p+1) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Cos[c + d*x])^p*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

((1 + I)*(e*Cos[c + d*x])^p*(E^(I*d*x)*(1 + 2*p)*Hypergeometric2F1[(1 - 2*p)/4, -p, (5 - 2*p)/4, -(E^((2*I)*d*
x)*(Cos[c] + I*Sin[c])^2)]*(Cos[c/2] + I*Sin[c/2]) + (-1 + 2*p)*Hypergeometric2F1[(-1 - 2*p)/4, -p, (3 - 2*p)/
4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*(I*Cos[c/2] + Sin[c/2]))*(((1 + E^((2*I)*d*x))*Cos[c] + I*(-1 + E^(
(2*I)*d*x))*Sin[c])/E^(I*d*x))^p*Sqrt[a*(1 + Sin[c + d*x])])/(2^p*d*E^((I/2)*d*x)*(-1 + 2*p)*(1 + 2*p)*Cos[c +
 d*x]^p*(1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c])^p*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))

________________________________________________________________________________________

Maple [F]  time = 0.108, size = 0, normalized size = 0. \begin{align*} \int \left ( e\cos \left ( dx+c \right ) \right ) ^{p}\sqrt{a+a\sin \left ( dx+c \right ) }\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^p*(a+a*sin(d*x+c))^(1/2),x)

[Out]

int((e*cos(d*x+c))^p*(a+a*sin(d*x+c))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \sin \left (d x + c\right ) + a} \left (e \cos \left (d x + c\right )\right )^{p}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^p*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*(e*cos(d*x + c))^p, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{a \sin \left (d x + c\right ) + a} \left (e \cos \left (d x + c\right )\right )^{p}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^p*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(a*sin(d*x + c) + a)*(e*cos(d*x + c))^p, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \left (\sin{\left (c + d x \right )} + 1\right )} \left (e \cos{\left (c + d x \right )}\right )^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**p*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sin(c + d*x) + 1))*(e*cos(c + d*x))**p, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \sin \left (d x + c\right ) + a} \left (e \cos \left (d x + c\right )\right )^{p}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^p*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*(e*cos(d*x + c))^p, x)